1091. Shortest Path in Binary Matrix
Question
Given an n x n binary matrix grid, return the length of the shortest clear path in the matrix. If there is no clear path, return -1.
A clear path in a binary matrix is a path from the top-left cell (i.e., (0, 0)) to the bottom-right cell (i.e., (n - 1, n - 1)) such that:
- All the visited cells of the path are
0. - All the adjacent cells of the path are 8-directionally connected (i.e., they are different and they share an edge or a corner).
The length of a clear path is the number of visited cells of this path.
Example 1:

Input: grid = [[0,1],[1,0|0,1],[1,0]]
Output: 2
Example 2:

Input: grid = [[0,0,0],[1,1,0],[1,1,0|0,0,0],[1,1,0],[1,1,0]]
Output: 4
Example 3:
Input: grid = [[1,0,0],[1,1,0],[1,1,0|1,0,0],[1,1,0],[1,1,0]]
Output: -1
Constraints:
n == grid.lengthn == grid[i].length1 <= n <= 100grid[i][j] is 0 or 1
Approach 1: BFS
Intuition
- Directions array as neighbors
- BFS maintaining current distance
Algorithm
Code
class Solution {
public:
vector<pair<int, int>> directions = {
{-1, -1},
{-1, 0},
{-1, 1},
{0, -1},
{0, 1},
{1, -1},
{1, 0},
{1, 1}
};
int shortestPathBinaryMatrix(vector<vector<int>>& grid) {
int rows = grid.size(), cols = grid[0].size();
vector<vector<int>> visited(rows, vector<int>(cols, 0));
// {{row, col}, dist}
queue<pair<pair<int, int>,int>> q;
if (grid[0][0] == 0) {
q.push({{0, 0}, 1});
visited[0][0] = 1;
}
while(!q.empty()) {
int r = q.front().first.first;
int c = q.front().first.second;
int currDistance = q.front().second;
q.pop();
if (r == rows - 1 && c == cols - 1) {
return currDistance;
}
for (auto direction: directions) {
int nr = r + direction.first;
int nc = c + direction.second;
if (nr < 0 || nr >= rows || nc < 0 || nc >= cols || grid[nr][nc] != 0 || visited[nr][nc]) continue;
q.push({{nr, nc}, currDistance + 1});
visited[nr][nc] = 1;
}
}
return -1;
}
};
Complexity Analysis
- Time Complexity:
- Space Complexity: