189. Rotate Array
Question
Given an integer array nums, rotate the array to the right by k steps, where k is non-negative.
Example 1:
Input: nums = [1,2,3,4,5,6,7], k = 3
Output: [5,6,7,1,2,3,4]
Explanation:
rotate 1 steps to the right: [7,1,2,3,4,5,6]
rotate 2 steps to the right: [6,7,1,2,3,4,5]
rotate 3 steps to the right: [5,6,7,1,2,3,4]
Example 2:
Input: nums = [-1,-100,3,99], k = 2
Output: [3,99,-1,-100]
Explanation:
rotate 1 steps to the right: [99,-1,-100,3]
rotate 2 steps to the right: [3,99,-1,-100]
Constraints:
1 <= nums.length <= 105-231 <= nums[i] <= 231 - 10 <= k <= 105
Follow up:
- Try to come up with as many solutions as you can. There are at least three different ways to solve this problem.
- Could you do it in-place with
O(1)extra space?
Approach 1: Brute Force
Algorithm
- Create a copy of the
numsvectornums2 - Iterate through
numswithiusing for loop - Replace
nums[(i+k)%n]withnums2[i]
Code
class Solution {
public:
void rotate(vector<int>& nums, int k) {
vector<int> nums2(nums);
int n = nums.size();
for (int i = 0 ; i < n ; i++) {
nums[(i+k) % n] = nums2[i];
}
return;
}
};
Complexity Analysis
- Time Complexity:
(1 loop through entire array) - Space Complexity:
(new array of size n)
Approach 2: Optimal
Algorithm: Using Reversal Algorithm
- Reverse function
- Arguments:
nums(passed by reference),start,endindex - while
start <= endtemp = nums[start];nums[start] = nums[end];nums[end] = temp;start++,end--
- Arguments:
- Reverse first
n-kelementsreverse(nums, 0, n - k - 1) - Reverse last
kelementsreverse(nums, n-k, n-1) - Reverse the while array
reverse(nums, 0, n-1)
Code
class Solution {
public:
void reverse(vector<int>& nums, int start, int end) {
while (start < end) {
int temp = nums[start];
nums[start] = nums[end];
nums[end] = temp;
start++;
end--;
}
}
void rotate(vector<int>& nums, int k) {
int n = nums.size();
// Normalize k
k = k % n;
// Reverse the first part (0 to n-k-1)
reverse(nums, 0, n - k - 1);
// Reverse the second part (n-k to n-1)
reverse(nums, n - k, n - 1);
// Reverse the whole array (0 to n-1)
reverse(nums, 0, n - 1);
}
};
Complexity Analysis
- Time Complexity:
- Space Complexity:
(no extra memory used)